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PBSTRACT 

The behaviour of t h e  e l ec t ron ic  energy f o r  t h e  ground s t a t e  

of a one-electron heteronuclear diatomic molecule i n  the  v i c i n i t y  

of t h e  uni ted atom i s  obtained through terms of orde: 5 R i n  the  

5 in t e rnuc lea r  d i s t ance  R . The presence of a t e r m  i n  R log R 

r e v e a l s  t h a t  the e l e c t r o n i c  energy is  not  an a n a l y t i c  func t ion  

of R a t  the uni ted atom. The expansion i s  checked by means 

theorem and the  work of Dalgarno and 

* This  r e sea rch  was supported by the  following g ran t :  Nat ional  
Aeronautics and Space Administration Grant NsG-275-62. 



PREFACE 

This  r e p o r t  i s  a revised and extended vers ion  of 

4 WIS-TCI-33. The extension i s  from terms of order R t o  

terms of order R i n  t h e  e l e c t r o n i c  energy as a func t ion  

of i n t e rnuc lea r  d i s t ance  R . The ch ief  r e v i s i o n s  are:  

(i) simpler d e f i n i t i o n  of the  separa t ion  constant  C ; 

(ii) r e - d e f i n i t i o n  of t he  heterogenei ty  index k ; 

(iii) use of a three-term, r a t h e r  than a five-term, recurs ion  

r e l a t i o n  f o r  the  c o e f f i c i e n t s  i n  the  so lu t ion  of t h e  inner  

equat ion.  
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INTRODUCTION 

The t o t a l  energy of a d i a t o m i c  molecule AB i n  a s t a t i o n a r y  

e l e c t r o n i c  s ta te  with fixed in te rnuc lear  separa t ion  R may be 

w r i t  t en  

where W i s  the e l e c t r o n i c  energy and Za, Zb are the atomic 

numbers of the  nuc le i .  Since the e l e c t r o n i c  energy i s  f i n i t e  

f o r  a l l  values  of R i t  i s  na tu ra l  t o  assume t h a t  i t  i s  a n a l y t i c  

and may be expanded about R = 0 i n  powers of R : 

The leading t e r m  

atom wi th  atomic number Z = Z + Zb and R.  A. Buckingham 

pointed out t h a t  the  f i r s t  coe f f i c i en t  W1 always vanishes 

exac t ly ,  even f o r  many-electron heteronuclear  molecules. 

Wo = W(0) i s  the  energy of the uni ted 
1 

a 

2 The second c o e f f i c i e n t  was obtained by Binge1 from a f i r s t -  

order per turba t ion  t reatment  based on the uni ted atom, and i s  

given by (atomic u n i t s )  

1 



where PUA(s) 
second term i n  the  bracket i s  e s s e n t i a l l y  the f i e l d  grad ien t  a t  

t he  nucleus, and vanishes fo r  an S-s ta te .  Bingel a l s o  obtained 

i s  the e l ec t ron  dens i ty  of t he  uni ted atom; the  

a general  expression for  t he  t h i r d  c o e f f i c i e n t  Wg from h i s  

f i r s t - o r d e r  treatment,  by arguing t h a t  the second-order per turba t ion  

energy would be of order R4 and cont r ibu te  only t o  W4 and 

higher  terms. However, earlier work by the  authors3 on the  

one-electron case, which may be analyked e x p l i c i t l y ,  showed t h a t  

Bingel 's  formula was inco r rec t .  More recent ly ,  Levine has 

obtained the  second-order energy e x p l i a i t l y  f o r  a homonuclear 

one-electron molecule, and shown t h a t  i t  i s  of order R . 
It appears t o  be extremely d i f f i c u l t  t o  analyze the  second-order 

per turba t ion  energy i n  the  general  case of a many-electron 

molecule. However, t he  form of W3 i n  t h e  genera l  case has  

r e c e n t l y  been derived5 by an a l t e r n a t i v e  r o u t e  based on the  

Hellmann-Feynman expression for  the  force dW/dR , and is 

given by 

4 

3 

It is of g r e a t  i n t e r e e t  t o  know the  genera l  form of the  

higher  terms i n  equat ion (2). As a f i r s t  s t e p  i t  seems prudent 

t o  c a r r y  the  e x p l i c i t  a n a l y s i s  of t he  ground state of t he  one- 

e l e c t r o n  system further' ,  and t h i s  i s  t h e  ob jec t  of t he  present  

paper.  
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ELECTRONIC ENERGY 

The e l e c t r o n i c  er.ergy W(R, Za9 Z ) possesses two simple b 

f ea tu res  as  a functior,  o f  R Za Zb The f i r s t  i s  symmetry 

wi th  r e spec t  t o  the  interchange of nuc le i  A and B , and i s  

t r u e  for  many-electron rnoleccles: 

The second property,  pecul ia r  t o  one-electron molecules, i s  t h a t  

W is homogeneous and of degree two in Za , Zb and 1 /R .  I n  

view.of these  fea tures ,  W may be wr i t t en  i n  the  form 

There a re ,  t he re fo r  e , es s e n t  i a  l i y  OR l y  two independent var  i ab  les 

i n  W . 
are  : 

The l i m i t i n g  values  for  the ground s t a t e  of the  molecule 

(a) United atom, R = 0 

(c)  Atom A , Z = 0 b 
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Certain other  f ea tu res  of W a r e  known. 

( a )  As mentioned above, the force between the  n u c l e i  due t o  the  

e l ec t ron ic  motion vanishes a t  the united atom, so t h a t  

(b) By the Hellmann-Feynman theorem 

where Oa(R) i s  the  e l e c t r o s t a t i c  p o t e n t i a l  due t o  atom A a t  

dis tance  R from the  nucleus and i s  given by 

where p a ( r )  i s  the  e l ec t ron  dens i ty  of atom A . 
( c )  The per turba t ion  of t he  one-electron atom A by a charge 

a t  d i s tance  R can be t r ea t ed  a n a l y t i c a l l y .  The f i r s t - o r d e r  

energy i s  p rec i se ly  equat ion ( 8 ) .  The second-order energy i s  

Zb 

6 7 
and has been obtained by Dalgarno and Lynn , and by Robinson . 
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Their work can therefore  be used t o  check the  r e s u l t s  obtained i n  
4 

the  present  paper. 

SCHRODINGW EQUATION 

The Schrodinger equation for the  system (atomic u n i t s ) ,  

may be separated by introducing confocal e l l i p t i c  (p ro la t e  sphero ida l )  

coord ina tes  3 , , t ,  the  f i r s t  two being defined by 

and 0 being the  azimuthal angle. For c states, which are 

a x i a l l y  symmetric, t he  wave function may be w r i t t e n  i n  the  form 

The func t ions  H and X s a t i s f y  the  ' inner '  and 'ou ter '  equat ions . 
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where (assuming a bound s ta te ,  W < 0 ) the parameters 

can be thought of as corresponding t o  W/Z , R Z  and Z a Z b / Z  , 
and are defined by 

6 ,  p and k 
2 2 

\+s = R t J 2 k  

The d i f f e r e n t i a l  equat ions (13) and (14) only have square- 

i n t eg rab le sdu t ions  i f  the  sepa ra t ion  cons tan t  C has c e r t a i n  

func t iona l  forms, say C inner  (P,k) and Cauter (P, CT). The 

r e l a t i o n s  between the parameters r, P and k , which are equiva len t  

t o  the  e l ec t ron ic  energy eigenvalues W as funct ions of RZ and 

Z,Z,,/Z2 , a r e  then given by the  equat ions 

The procedure we s h a l l  follow t o  ob ta in  the dependence of W 

on R when R i s  small i s  e s s e n t i a l l y  t h a t  introduced by 
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8 Hyl'leraas i n  solving the  equations t o  any accuracy. The fugct ion 

H ( 7  - ) *  i s  expanded i n  terms of Legendre Eolynomials, and from the  

r e s u l t i n g  determinant of e l iminat ion the  separa t ion  eigen-constant 

can be expressed a s  a power s e r i e s  i n  p . The outer  2 

, :  
inner  

equat ion fo r  X ( 2 )  can be t rea ted  i n  a s imi l a r  fashion, but  the 

determinant of e l imina t ion  cannot be expanded i n d e f i n i t e l y  a s  a 

power s e r i e s  i n  p and 6 . It i s  then expedient t o  r e t u r n  t o  

the  d i f f e r e n t i a l  equat ion and solve i t  i n  an i t e r a t i v e  manner t o  

ob ta in  the  non-analytic terms. 

INNER EQUATION 

9 The mathematical p roper t ies  of t h i s  equation a r e  well-known . 
It i s  convenient t o  put 

I 
where the  s ign  of the  exponent i s  unimportant fo r  our purposes; 

fo r  de f in i t eness  we take the  positive sign. Then h ( q )  s a t i s f i e s  
L 

8,9 Consider a so lu t ion  of (20)  i n  the  form 

00 



8 

where I(?) i s  tbe 14 Legendre polynomial. By s u b s t i t u t i n g  

(21) i n t o  ( X O )  and us ing  t h e  d i f f e r e n t i a l  equat ion and recurrence 

r e l a t i o n s  fgr  10 
we get 

(22) 

with ti E 0 and ho a r b i t r a r y .  This i s  a three-term recurrence 

r e l a t i o n  for  the  c o e f f i c i e n t s  4A. 
series so lu t ion  (21) i s  square- in tegrable  i s  t h a t  t he  determinant 

-1 

The condi t ion  t h a t  the  i n f i n i t e  

of e l imina t ion  vanishes,  namely 

C 2p (1-k) /3  0 0 

- 2p ( l+k) c-2 4 ~ ( 2 - k ) / 5  0 

0 -4p (2+k) /3 C-6 6p (3-k) /7  

0 0 -6p(3+k)/5 c-12 

= o  

. 

Before consider ing the  s o l u t i o n  of (23), i t  i s  h e l p f u l  t o  

make the  following remark. The "heterogeneity" parameter k def ined 

by equation (17) can  be w r i t t e n  i n  the  form 



. 
9 

It follows t h a t  when the system reduces t o  atom A 

atom B (Za = 0) i n  the  e l ec t ron ic  state with quantum numbers (n'Je'O), 

k = n or -n i r r e s p e c i t v e  of t h e  value of R (and the re fo re  of p ). 

Now t he  separa t ion  constant  C vanishes for the  ground s t a t e  of 

(Zb = 0) o r  

t he  atoms, t h a t  i s  when k = 1 . Therefore, the  ground s t a t e  

eigen-constant Cinner s a t i s f y i n g  equation (23) must have (1 - !k2) 

as a f a c t o r ;  t h t s  conclusion can be confirmed by inspec t ion .  

We a r e  i n t e r e s t e d  i n  solving equat ion (25):for .small values  of 

R , t h a t  i s  of p . Expanding the determinant w e  have 
_ .  

where b, , and A2, a r e  the  p r inc ipa l  minors obtained by d e l e t i n g  

the  f i r s t ,  and the f i r s t  two, rows and columns. 

When p + O  

and, hence the  f i r s t  approximation for C i s  



10 

Now 

and the re fo re  by s u b s t i t u t i n g  i n  (25) and not ing  t h a t  

h,/b, = -6 t O(p'), 

the  second approximation is  

It is c l e a r  t h a t  t h e  so lu t ions  Cinner(p,k) of equat ion (23) can 

be wr i t t en  as  i n f i n i t e  power series i n  p . The higher  terms are 

r e a d i l y  obtained bu t  w i l l  not  be considered here .  

2 

OUTER EQUATION 

11 
To solve the outer  equat ion sys temica l ly  w e  follow J a f f e  

and put  

and change t o  the  v a r i a b l e  

e 



0 
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I C  

The function F ( r )  s a t i s f i e s  the equation 

i 

I 

and may be expressed as  the power ser i e s  

The coe f f i c i ent s  i n  equation (31) s a t i s f y  the three-term 

recurrence re la t ion  

, 

where c - ~ E  0 , we can take co = 1, and we have put 
- - >  ' * A  
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I 

The condi t ion t h a t  the  i n f i n i t e  s e r i e s  so lu t ion  ('31) i s  square- 

i n t eg rab le  is  t h a t  determinant of e l imina t ion  vanishes,  namely 

2 A -  6 

u2 

l2 

A - cr2 - 2(1+2p -a) 

0 

22 

. 

Before proceeding fu r the r  i t  i s  necessary t o  know the  order  

of magnitude of the  energy p a r a m t e r  Q , i n  terms of which 

the  e l ec t ron ic  energy is  

w = - P/21 I+&. (35) 

It follows t h a t  for t he  uni ted atom (p=O) i n  the  e l e c t r o n i c  

state ( Y 4 0 ), 

for  the ground s ta te  of i n t e r e s t .  

2 = n-1 . It i s  then easy t o  see  t h a t  6 = O(p 

Returning t o  the  determinantal  equat ion (30.) , it is  obvious 

2 4 
t h a t  A = 0 (a ) = 0 (p ). 

Let u s  focus a t t e n t i o n  on the  leading term i n  

order  p or higher .  Then we can r ep lace  equat ion (Sly-) by 

To proceed f u r t h e r  r e q u i r e s  some ca re .  

A , which i s  ob 

4 



0 

! A - a  2 l2 

0 

- 2 ( 1+2p) 

l2 

0 

22 

which i s  equivalent t o  
I 

I A - 6  2 

62 

0 

0 

1 ,  

-1 0 

0 -1  

0 

0 

-1 

2 ( 1+2p / 3 )  

, .  

This determinant. 

give 

may be expanded as  a continued frac t ion  t o  

2 
To find the term of order 6 we s e t  p = 0 i n  the continued 

12 fraction t o  get  

. .  



, .* , 

14 

, 

2 
The c o e f f i c i e n t  of Q i s  1-O( where 

I - - .  - - I c ( \  c ... 
= 2- 1- 2- l-o( 

4 ,  Thus o( = 1 and the  t e r m  i n  tT2 vanishes.  Hence A = o(p ) a  or  i n  

terms of the  o r i g i n a l  separa t ion  cons tan t  

A t  t h i s  s tage,  by equat ing Cinner 

equation (40), according t o  equation (18), the  expansion of W 

i n  powers of R through R may be found. The next  term may no 

from equat ion ( 2 7 )  and Cauter from 

4 

doubt be obtained by inves t iga t ing  the  continued f r a c t i o n  i n  

equation (38). However, a s  the  a n a l y s i s  required i s  not  f ami l i a r ,  

and the  form i s  not  quoted i n  the  r e a d i l y  access ib l e  l i t e r a t u r e ,  

we have found it simpler t o  r e t u r n  t o  the  d i f f e r e n t i a l  equat ion.  

ANALYSIS OF DIFFERENTIAL EQUATION 

The d i f f e r e n t i a l  equat ion (30) f o r  F may be w r i t t e n  i n  the  

form 

. 
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The discussion above has established that . _  

1- 

OCf) d 6 o(py), 

< 

and i t  i s  then evident from the recurrence re lat ion (32) that 

c = O( 6 ) for n > 0 . We therefore put 2 
n 

a -  

’ :  

Equation .(41) can then be Written 

-2  where B = d A = o(1)  . We s h a l l  now proceed t o  solve t h i s  

equation with inkreasing degrees of $accuracy. 
, 1, 

’ <  
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(a)  Retain O(1) 

2 If terms involving 6 , 6 ,  p and B are dropped from 

equation (44) w e  a r e  l e f t  with 

. .  
(45 1 

Hence, by two quadratures 
" I 

13 
where L i 2  i s  the  di logari thm funct ion . The wave func t ion  X , 
given by equat ions (28) and (42), t he re fo re  has the  form 

)I 

(b) Retain O(P) 

I f  terms involving c2 and d a r e  omitted from equat ion (44) 

it becomes 

This equation ma Y be integrated 
once t o  give 



o-ij' 

- 4F [ t-'- 8 )  at.. 
1;:G 

By changing back to the variable 5 
we get  

and s p l i t t i n g  the integral, 

where 

t 60 

< 

Now the f u n c t i w  f m u s t  not 'increase with 5 a s  fas t  a s  exp(pr 1, 
' .  

otherwise by equations (28) and (42) the function X(3) 
2 be L (1,W). But unless the coef f ic ient  of exp[Zp(r+l)) i n  

equation (49) vanishes, f w i l l  increase l ike  exp(2px ). Hence 



where l o g r  i s  Euler ' s  constant .  Therefore 

The function k m y  be obtained - t h i s  order of accuracy by i n t e k r a t i n g  

equation ( 4 9 ) ,  bu t  i s  not  quoted s ince  the  i n t e g r a l  cannot be 

J expressed ' i n  terms of fami l ia r  funct ions.  

2 
( c )  Neglect 6 

I f  only the  term i n  C 2  i s  neglected,  equat ion (44) may s t i l l  
, .  

$ 4  be in tegra ted  once t o  give 

By the  same argument a s  above, i n  order fo r  X ( r )  t o  be square 

in tegrable  the  f i r s t  i n t e g r a l  i n  the parentheses  must  vanish.  Hence 
I 

'13 = 4k rear, 4f) 1 / W@+I ) +l. $- 4 3 ) )  (54) 

where f ( y , x )  i s  the  incomplete gamma function14 def ined by 

00 
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Clearly,  by l e t t i n g  6 + 0  

(51). Higher terms i n  f and B can presumably be found by so lv ing  

equat ion (53) for  

and i n t e g r a t i n g  t o  find a new expression for 

i n  equation (54) we r e t u r n  t o  equat ion 

f , s u b s t i t u t i n g  on the  r i g h t  hand s i d e  of (44) 

f . 

ENERGY EXPANS ION 

The separa t ion  eigen-constant obtained from the  outer  equat ion 

i n  the  previous sec t ibns  may be wr i t t en  

The r e i a t i o n  between 6 , p and k for  the  ground s ta te  i s  

obtained by equat ing t h i s  t o  

name fy  

Ginner , given by equat ion (27), I 

, I  

. I ,  i 

rr/n5\ To f ind the  expansion of W i n  powers of R through U\K 1 ,  or 
. I  . 

.bff mor e cbnwenient l y  

Since 6 = O(s 1, 2 

: P-. . . .  . , 
, .  

i n  powers pf s = RB , we: proceed as follows. 

equat ion (35) can be expanded t o  give 

*[, 1 ' 
w a - L & Z (  I -  ~ S - ~ S X )  + O(S'). ( 5 8 )  

a 

We seek the  !expansion of 6 i n  powers of s by s u b s t i t u t i n g  



and 

where f3 = ZaZb/Z2 , into  equations (56) and ( 5 7 ) .  

By ignoring terms of o ( s  ) t h i s  y i e lds  
5 

6(1W A+) 3 4- c r y  I - S + 2 S e g l P b )  = +,SZ - io80  E!(IZ-llp) 

4- O(S% (61) 
By solving i t era t ive ly  for d and substituting the resu l t  

into  equation (58) we obtain f i n a l l y  

3 = -Lza[\ 2 - i p s z  + - $ p ( t -  I b p / 1 7 ) s *  5 

5 
The occurrence of the term i n  R log R reveals  the interest ing  

I 
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b 
I 

' *  

2 1  

f a c t  t h a t  the  e l e c t r o n i c  energy is  no t  an a n a l y t i c  funct ion of t he  

in te rnuc lear  d i s tance  a t  R = 0. Th i s  r e s u l t  must a l s o  be t r u e  i n  

the  many-electron case? and presumably ne i the r  i s  the  e l e c t r o n i c  energy 

of polyatomic molecules an ana ly t i c  funct ion of the  var ious i n t e r -  

nuclear d i s tances  a t  the  united atom. The logarithmic term can be 

regarded a s , a  consequence of the coulombic s i n g u l a r i t i e s  i n  the  

p o t e n t i a l .  It does not  appear i n  F r o s t ' s  one-dimensional model i n  

which the  e l ec t ron  i s  a t t r a c t e d  t o  the  nuc le i  by d e l t e  p o t e n t i a l s .  

It i s  obvious from equation 1) t h a t  higher terms i n  the  expansion 

w i l l  a l s o  involve log R , and it can e a s i l y  be seen from equat ion ( 5 4 )  

7 2 fo r  B t h a t  a term i n  R ( log  R )  w i l l  a l s o  occur. 

2 'The dependence of W on  Z Z /Z i s  in t e re s t ing .  It i s  c l e a r  

= 4Z,Zb/$ 

a b  

from the  dependence of Ginner on k2 , which involves 

l i nea r ly ,  t h a t  W can be expanded i n  a power s e r i e s  i n  f about 

p =  0 . Equation (6) may therefore  be w r i t t e n  i n  the form 

c o e f f i c i e n t  w (RZ) is a f i r s t - o r d e r  energy, and can' be 1 The 

given e x p l i c i t l y  i n  closed form. It i s  ana ly t i c  i n  RZ a t  R = 0. 

The f i r s t  logarithmic t e r m  occurs i n  

e x p l i c i t l y  i n  closed form. 

(64 )  i s  t h a t  

w2 ,which i s  a l so  known 
' 

I 

A noteworthy f ea tu re  of the expansion 



This  is c l e a r l y  t r u e  for  w1 and w 2 from eqtration (63). The 

general  r e s u l t  follows from the  faGf t h a t  s 2  i s  t h e  lowest power 

of s = RZ assoc ia ted  with 

and i n  general  by equation (23). 

t r u e  also i n  the  many-electron case,  where the  

w = w (RZ, 1/Z)  depend a l s o  on 1/Z because of e l e c t r o n i c  

, given by equat ion (571, P in ’‘inner 

One would expect (65) t h i s  t o  be 

c o e f f i c i e n t s  

n n 

repu 1s ion.  

DISCUSS I O N  
I 

1. Coeff ic ien t  W2 

It follows from equation (63) by comparison with equat ion (2) 

that ’ 

This  agrees with the  r e s u l t  obtained from the  general  formula (3) 

by i n s e r t i n g  

atom, namely 

(0) for  the ground s t a t e  (Is) of a one-electron 
QclA 
3 Z / a  , and s e t t i n g  the  f i e l d  grad ien t  equal  t o  zero.  

I~ 

2. Coeff ic ien t  W3 

From (63) w e  have 
> I  

. 
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* i '  

; T '  
which agrees  with the  genera l  formula (4 ) ' .  

agree with Bingel 's  

dependence on ZaZb/Z , namely 

How&&', 'it does.+not,d 
i 2 o r i g i n a l  formula, which had the Tong 

2 
, v i  

. f  
' I  

3. Hellmann-Feynman Theorem 

For a one-electron atom i n  the  ground s t a t e  equat ions (8) 

and (9) ;.&com& - i .  
I 

An i d e n t i c a l  expression is  obtained by d i f f e r e n t i a t i n g  equat ion 

. I  (63) with  r e spec t  t o  Zb : I _  I .  

+ .  1 3 . ,* 

- 4 .  ,Per turbat ion of atom A by charge Zb, i 

, '  " 
A s  mentioned e a r l i e r ,  t h e  pe r tu rba t ion '  of a one-electr'on 

. ,  
atom, wi th  atomic number 

can be t r ea t ed  a n a l y t i c a l l y ;  

Za , by a charge Z d  a t ' d i s t a n c e  R , 
6,7 The second order energy i s  

' ,  

23 
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where x =I 2RZa . When t h i s  expression i s  expanded i n  powers of 

x we ge t  

An i d e n t i c a l  expression i s  obtained for  t h e  c o e f f i c i e n t  of 

Zb2 from equat ion (63). 

5. United atom per turba t ion  treatment 

Levine has evaluated the  second-order energy E(*) i n  c losed 

form for the per turba t ion  treatment of a homonuclear o n e - e l e c t r w  

+ 
2 molecule (H ) based on the  uni ted atom a t  the  c e n t r e  of charge 

(mid-point). The f i r s t - o r d e r  energy i n  t h i s  t reatment  is (s = RZ) 



Y 

2s 

4 
The expansion of the  'second-order energy quoted by Levine i s ,  

. 

By combining (72) and' (74), and including the  zeroth-order energy, 

The expansion (62) f a r  t he  homonuclear case (!= 1) i s  , 

(2) We see  t h a t  the uni ted atom per turba t ion  treatment through @ 
'I?* 3 

' gives the c o r r e c t  numerical c o e f f i c i e n t s  fo r  R2 and R ,, but  

not those for  t he  terms R4 and R log R . We deduFe t h e t  

E(3) i s  of order R4 , and probably conta ins  a logarithmic term. 

5 

- -  -a. It appears t o  be very d i t f i c u i t  t o  p i e d f e t  t!te crder in R of 

! t he  per turba t ion  energ ies  E (n) for  t h i s  trea.tment. 

CONCUY@IONS 

The most s t r i k i n g  r e s u l t  i s  the  presence of logarithmic terms 

i n  the  e l e c t r o n i c  energy of a molecule near the  uni ted  atom. This  



may be 'conkpared wi th  the firesence bf exponent ia l ly  small terms 

i n  R , as w e l l  as inverse  powers of R , i n  t he  asymptotic 
. I  , 1 .  

behaviour of 'the e lectronic .  energy near in f in i te !  separa t ion .  The 

leading exponent ia l  terms have r e c e n t l y  been obtained e x p l i c i t l y  

' f o r  a homonuclear one-eleetron molecule by Orchinnikov and 

Sukhanov15. 

terms i s  q u i t e  d i f f e r e n t .  

However, the  phys ica l  o r i g i n  of the  two kinds of 

The"ok8her rmlti of  i n t e f e s t '  i s  the  s i m p l i c i t y  ~f the  

2 expansion (64) of W i n  powers of ZaZb/Z , as revealed by (65). 

I n  t h i s  expansion t h e  term 4 'R appears as  t h e ?  leading second- 

order t e r m ,  i n  c o n t r a d i s t i n c t i o n  t o  the  uni ted  atom pe r tu rba t ion  

treatment.  ' Althou 

Hamiltonian with ZaZb/Z as a l i n e a r  pe r tu rba t ion  parameter, 

t h e  , coe f f i c i en t s  wn i n  (64)' are simply r e l a t e d  t o  a f i n i t e  

suh of t he  pe r tu rba t ion  energies '  assoc ia ted  withvThe pe r tu rba t ion  

df an atom by a small charge, Zb , a t  d i s t ance  R . It follows 

' * t h a t  i f  ( 6 5 )  i s  true' 'in the many-el'ectron case, t h e ' c o e f f i c i e n t  

, I . \  f I 
. I  

Y 

i t  is not  ppss ib l e  t o  write t h e  ,malecularl 

2 

, .  

W4 and the  higher  terrfis'of equat ion (2 )  may be obta ined-by* 

consider ing the  pe r tu rba t ion  of an atom by a small charge.  

i s  equivalent  t o  a uni ted atom pe r tu rba t ion  t reatment  i n  which 

the  united atom remains a t  dne of t h e  n u c l e i ,  ins tead  of being 

This  

placed a t  t he  c e n t r e  of nuclear  charge.  
I ,  

, 
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